The Length of the Longest Increasing Subsequence of a Random Mallows Permutation

نویسنده

  • Carl Mueller
چکیده

The Mallows measure on the symmetric group Sn is the probability measure such that each permutation has probability proportional to q raised to the power of the number of inversions, where q is a positive parameter and the number of inversions of π is equal to the number of pairs i < j such that πi > πj . We prove a weak law of large numbers for the length of the longest increasing subsequence for Mallows distributed random permutations, in the limit that n→∞ and q → 1 in such a way that n(1− q) has a limit in R.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Length of the Longest Increasing Subsequence in a Random Permutation

Complementing the results claiming that the maximal length L n of an increasing subsequence in a random permutation of f1; 2; : : : ; ng is highly concentrated, we show that L n is not concentrated in a short interval: sup l P(l L n l + n 1=16 log ?3=8 n) ! 0 as n ! 1.

متن کامل

On the length of the longest subsequence avoiding an arbitrary pattern in a random permutation

We consider the distribution of the length of the longest subsequence avoiding an arbitrary pattern, π, in a random permutation of length n. The well-studied case of a longest increasing subsequence corresponds to π = 21. We show that there is some constant cπ such that as n → ∞ the mean value of this length is asymptotic to 2 √ cπn and that the distribution of the length is tightly concentrate...

متن کامل

On Increasing Subsequences Of

We study the fluctuations, in the large deviations regime, of the longest increasing subsequence of a random i.i.d. sample on the unit square. In particular, our results yield the precise upper and lower exponential tails for the length of the longest increasing subsequence of a random permutation. §.

متن کامل

On Increasing Subsequences of I.i.d. Samples

We study the uctuations, in the large deviations regime, of the longest increasing subsequence of a random i.i.d. sample on the unit square. In particular, our results yield the precise upper and lower exponential tails for the length of the longest increasing subsequence of a random permutation. i=1 denote a sequence of i.i.d. random variables with marginal law on the unit square Q = 0; 1] 2. ...

متن کامل

On the length of the longest monotone subsequence in a random permutation

In this short note we prove a concentration result for the length L n of the longest monotone increasing subsequence of a random permutation of the set but less is known about the concentration of L n around its mean. Our aim here is to prove the following.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011